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Abstract 

The Feynman integral is generalised so as to involve the fluctuations of vacuum, from 
this integral the generalised Schr6dinger equation is derived and the energy spectrum for 
the Coulomb potential determined. 

1. Introduction 

The purpose of this paper is to generalise the Feynman integral over paths 
in the case where we consider fluctuations of  the vacuum, and to derive the 
generalised Schr6dinger equation. 

First, let us remember Feynman's  fictitious experiment by means of 
which he arrives at the integral over paths (Feynman & Hibbs, 1965). 

A source of electrons is considered in this experiment and a movable 
detector is fixed at a certain distance f rom the source. Between the source 
and the detector is put a screen with two holes, 1 and 2, in it. 

Now, we investigate the probability that an electron will arrive in the 
detector at various vertical distances x f rom the source. 

I f  we block hole 2, the particle will pass through hole 1, and if we block 
hole 1 the particle will go through hole 2. The probability Pl(x) to find a 
particle at point x will be given in the first case like this: 

P~(x) = IqS~(x)l 2 (1.1) 

where q~x(x) is the complex function called the probability amplitude corre- 
sponding to the path going through hole 1 in the detector. 

In the second case the probability to find a particle at point x is P2(x) and 
it holds good: 

P2(x) = l ~ 2 ( x ) l  z (1.2) 

where q52(x ) is the probability amplitude corresponding to the path going 
through hole 2 in the detector. 
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I f  we leave open both holes, the probability of finding a particle at point 
x will be given like this: 

P(x) = lea(x) + r (1.3) 

Now, let us consider that there is not only one screen between the source 
and the detector but that there are N screens, each of  them having M holes, 
with width A(Ai,B~)j, where Ai, B~ are x-coordinates of the borders of the 
holes, j being an index belonging to thej th  screen,j = 1,2 . . . .  , N and i being 
an index belonging to the ith hole, i = 1,2, ..., M; A denotes the length of the 
interval ( , ). We can say that the trajectory of the particle rises in such a way 
that the particle goes through interval (ax,b~) at the time q, through the 
interval (a2,b2) at the time t2 . . . .  , through the interval (a,,b,) at the time t,, 
where (a~,b~) are intervals from the set of intervals (At,B~)j. According to 
Feynman, the probability amplitude r belongs to this trajectory. If  we 
choose another set of numbers tk, (ak,bk), we get other alternative path of the 
particle. 

It is obvious that there are a great many of these alternative trajectories, 
and therefore the total amplitude for the process is the sum of the amplitudes 
for each route considered separately. 

For the case N-+ 0% M - + ~  all trajectories will be continuous functions 
of the time t, and the total probability amplitude for the transition of a 
particle from point a to point b is as follows: 

U(b,a) = Z qS[x(t)] (1.4) 
over a l l  

trajectories 
from a to b 

where x(t) is the x-coordinate of a path. The amplitude is postulated as 
follows: 

~b[x(t)] = 1 exp{(i/h) S[x(t)]} (1.5) 
.gi 

where 
tb 

S = f L[~(t) ;x(t)] dt (1.6) 
ta 

is the classical Hamilton-Jacobi action function and L is the Lagrange 
function. 

Feynman & Hibbs (1965) have shown that the probability amplitude 
U(x, Xo) concerning the transition of  the particle from point Xo to point x 
satisfies the integral equation 

U(x, Xo) = f U(x, xl) U(xl,Xo) dxl (1.7) 

If  we put U(x, xo) = ~(x), U(xl,xo) = ~(xa), we get 

4,(x) = ( m(x, xl) 4,(xl) dxl 
or generally 

4,(x, t) = f U(x, t;xl, q) O(x~, tO clx~ (1.8) 
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and the function ~(x, t) may be interpreted as the wave function of quantum 
mechanics. 

For an infinitesimal transition from point x~ and time tk in point xk+l 
and time tk+~, we can write (Blokhintsev, 1966): 

U(xk+~, tk+i ; xk, t~) = 1 exp{(i/h) S[xk+ a, xk, A t]} (1.9) 

where 

S[xk+l,xk, At] = 

; ] [m(xk+l-_x~ --V(xk+i) At; At=tk+l tk, > t ,  (1.10) 
[ 2 t A t - tk+l 

2. Fluctuations of  the Vacuum and the Integral over Paths 

Let us notice term (1.4) 

U(xl Xo) = ~ ,~ exp{(i/h) S[x(t )]} (2.1) 
over a l l  

trajectories 
f rom x o to x 

We can see that all amplitudes exp{(i/h)S[x(t)]} are multiplied only by a 
constant 1/A. In other words, the Feynman sumis constructed in such a way 
that all trajectories are considered equivalent and therefore equally 
probable. 

The question arises, as to how the formulation of the problem must be 
changed if we include the fluctuations of the vacuum. It is obvious that these 
fluctuations cause perturbations of the considered trajectories and, no 
doubt, in such a way that some trajectories will be less probable and others 
more probable. We arrive at this conclusion because it is obvious from the 
viewpoint of statistical mechanics that the particle will perform the Brown- 
Jan motion as a result of accidental fluctuations. 

This motion is described by the Wiener measure # (Gelfand & Yaglom, 
1956): 

f f ~ . . i  "exp 

a l  a 2 a n 

( x l  - Xo)  2 ( x 2  - x l )  ~ ( x .  - x . _ l )  ~ 

4D(& -- to) 4D(t2 - q) . . . .  4D(t, - t,_l) 
[(4zcD)" (& - to)(t2 - t l ) , ' " ,  (to -- t , -0]  1/2 

d x l  dx2"  " " d x .  (2.2) 
the physical meaning of measure/~ being as follows: measure # determines 
the probability that the particle goes through the interval al, bl at the time 
t~, through the interval (a2,b2) at the time t2, ..., through the interval 
(a,,b,) at the time t,, to < tx < t2 < " "  < t,. The constant D in the formula 
(2.2) is the so-called coefficient of diffusion, and it involves size, mass, 
etc. of the elementary particle. 
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In consideration of what was said, we are forced to make an 'intuitive' 
assumption that the amplitude U(x, xo) will involve the effect of fluctuations 
after multiplying term [exp(i/h)S]/A by #, where/~ is given by (2.2). For the 
infinitesimal transition from point x~ to point xk+l we can write (Montroll, 
1952): 

1 
,tl(Xk+l,Xk) (4~zDAt)I/2 exp[-(xk+a - Xk)2/4DAt] (2.3) 

and therefore for U(x~+~, tk+~; xg, tk) we get 

1 
U(Xk+l, tk+l; Xk,tk) ---> A(4~cDA t) 1/2 exp[--(Xk+l 

-- xk)Z/4DAt].exp{(i/h) S[xk+~,xk,At]} (2.4) 

Now we can arrive at deriving the generalised SchrSdinger equation. 

3. The Generalised Schrgdinger Equation 

We said in the introduction that ~ satisfies the equation 

t~+O = f U(x~+~,t~+~;x~, t~) ~p(x~,t~) dx~ O(Xk+~, 

If  we insert (2.4) into (3.1) and put 

Xk+l - Xk = ~; Xk+l = X; tk = t 

m 1 
tk+l -- tk = 6; ~ = 2h6; fl = 4D6 

(3.1) 

(3.2) 

i V(x)6 exp [- (i/h) r (x)  61 ~ 1 - 

we get from equation (3.1) the following equation 
oo 

1 / f l \~/2 r r i6 V(x)] O(x ~,t) a~ (3.3) 
J 

Obviously 

•(x,t + a) = ~(x , t )  + 6 ~  + " . 

r  Ox z ' ' "  

We can write instead of (3.3) that 
(x) 

~(x, t )  + 6 - ~  + . . . .  -~ @] 
d L ~ 

- - o o  

1020r2 i6v.~b i6 ~ i6 Ozo 2] 
+U~-~ - ~  +-Av.r -~V.gX~x~r de (3.4) 
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After modification of equation (3.4) we get 
X/2 O(x,t)+6 + . . . .  {fi_] [JtO Jz00 J~020 

in] [A - A ~ x  q 2Aax z 
i6 ifi ~Jl. v.4, +-~.j~. v. ~ -  

020 I 
~ J ~ .  v. axe/ 

where 
oO 

J1 = f exp(ie( 2 - fl~2) d~ 
~ 0 0  

oO 

Jz = f exp(i~( 2 - fi(z) (d~ 
~ c O  

o~ 

Ja = f exp(i~ 2 - fi(2) ~2 d( 

We can see that there is an odd function in J2. Therefore, J2 - 0. For two 

where 

remaining integrals we get, according to Gradhshtein & Ryzhik (1963): 

2- ~/(a 2 + f12) exp[(i/2) arctg(~/fl)] 

V~ 
~/[(a2 + fl2)3]" exp[~iarctg(~/fl)] 

Ja 2i6 
y;=-T'~ 

7 = [1 + (~2/fl2)] i -  (3.6) 

and ~ is not dependent on 6. If  we put 

A =J1 

we can write instead of (3.5) that 

~/,(x,t)+6 + . . . .  ~ , - ~ , ~ - ~ - . v . ~ - h ~ O  ~ . . .  

After comparing the coefficients with 6 and modification, we get 

= y ~ + V. 0 (3.7) 
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The last equation is the generalised SchrSdinger equation for the one- 
dimensional case only. For the case of three dimensions, we can write 

i h ~  = ~V~q, + V-~ (3.8) 

We can easily verify that 
h 2 

lim 7 = 
D-~ 2m 

therefore, equation (3.8) converges to the Schr6dinger equation for D ~ ~. 

4. The Energy Spectrum for the Coulomb Potential. 

Let us look for the solution of equation (3.8) in the form 

= exp [-(i/h) at ). r (4.1) 

After inserting (4.1) into (3.8) we get 

~q~ = ~,V z r + V. r (4.2) 
By putting 

h 2 
7 = - 2m' (4.3) 

and 
m' = m + am (4.4) 

where 

(4.5) 
ih 

we can write instead of equation (3.2) the following equation 

h 2 
~r = - V 2 r + V. r (4.6) 

2m' 

where m' is the complex quantity. 
The fact that the mass m' is the complex quantity we interpret in such a 

way that we consider the complex mass as the mathematical notion suitable 
for the physical application. 

We arrive at this interpretation after comparing it with other authors 
who use in a similar way the complex quantities which have no immediate 
physical content. 

Popov et al. (1967) have introduced imaginary time for the description 
of the quasistationary processes. The complex potentials for describing 
the atomic collisions has been used by Mizuno &Chen (1971). Lee & Wick 
(1969) have arrived at the complex mass in the consequence of the indefinite 
metric, and Yamamoto & Kudo (1971) have considered the complex 
mass to be an integral part of quantum theory of fields. 

Now we can start with the determination of the energy spectrum. 



THE GENERALISED FEYNMAN INTEGRAL 37 

We know from quantum mechanics (Merzbacher, 1970) that the energy 
spectrum for the radial equation for equation (3.6) with the Coulomb 
potential 

Z e  2 
V -  

r 
is given by the following expression: 

Z 2 m'  e 4 
8, - 2n 2 h2 (4.7) 

By putting 
Z z me  4 

E ,  = 2n z hZ (4.8) 

where m is the classical mass of  the electron, we get with regard to (4.4) 
and (4.5): 

e , =  E , (1  + 2~hD) (4.9) 

In the end we have for the wave function the expression 

= exp[- ( i /h)  E ,  t]. exp[-(F, /2) ,  t]. ~b (4.10) 
where 

E. 
F .  = - -  m D  

that is 
e 4 

F,  = 2n z h2 D (4.11) 

We note that the motion of  the electron in the Coulomb potential is not 
stationary but quasistationary as a result of  the term exp[ - (F , /2 ) t ]  in the 
wave function. 

I t  is obvious that the vacuum fluctuations will also effectively modify 
the potential V(r) in which the electron moves. The classical derivation of  
this effect was performed by Welton (1948). 
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